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Introduction

Randomized experiments lie at the heart of causal inference and

data-driven decision making.

• In an A/B experiment, an online business randomizes two different

treatments and aims to infer which is better.
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Standard approaches

• A classical method to analyze A/B experiments is the t-test (Kohavi

et al., 2020).

• Limited to average marginal effects and not finite-sample valid.

• Methods that use Fisherian Randomization Tests (FRTs) —e.g.,

permutation tests— tend to utilize standard t-statistics, producing

results similar to t-tests.

• ANOVA-based methods can be more flexible but mainly used with

linear models (Gerber and Green, 2012).
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Contribution

We propose Machine Learning (ML)-assisted randomization tests.

The main idea is to:

• Utilize ML-based test statistics in the context of an FRT.

• Retain finite-sample validity of FRTs.

• Increased power compared to linear models thanks to ML.

- New theoretical results on the test power.

• Flexible enough to test for global effects, heterogeneous treatment

effects, and spillovers.
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Setup

• Z = (Z1, . . . ,Zn) ∈ {0, 1}n: binary treatments.

• Treatment assignment is known: Z ∼ Pn(Z ).

• Y = (Y1, . . . ,Yn) ∈ Rn: outcomes.

• X1, . . . ,Xn: covariates, Xi ∈ Rp. X ∈ Rn×p for entire matrix.

We posit the outcome model:

Yi = µ+ b(Xi )︸ ︷︷ ︸
baseline

+Zi h(Xi )︸ ︷︷ ︸
direct effect

+ g(X,Z−i )︸ ︷︷ ︸
spillover

+εi , (1)

where εi is an independent noise with E(εi | X) = 0, ε ⊥⊥ Z | X.

(1) follows Causal ML literature (Hill, 2011; Chernozhukov et al., 2018; Künzel et al., 2019).
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Null hypothesis of no treatment effect

Outcome model:

Yi = µ+ b(Xi )︸ ︷︷ ︸
baseline

+Zi h(Xi )︸ ︷︷ ︸
direct effect

+ g(X,Z−i )︸ ︷︷ ︸
spillover

+εi .

As a starting point, consider the null

Hglob
0 : h = 0, g = 0 v.s. Hglob

1 : h ̸= 0, g = 0.

• Under the potential outcomes framework, Hglob
0 ≡ Yi (0)

d
= Yi (1),

which is weaker than Fisher’s sharp null.
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ML-based test statistic

To test Hglob
0 , we propose constructing two models using ML:

Mglob
0 : Yi ∼ Xi , Mglob

1 : Yi ∼ Zi + Xi .

Define the test statistic as

tn(Y ,Z ,X) := CVn,k(Mglob
0 )− CVn,k(Mglob

1 ), (2)

where CVn,k(M): k-fold cross-validated squared loss of model M.

• Intuitively, tn(Y ,Z ,X) measures whether Z is predictive of Y .

• An ANOVA-type statistic (Gerber and Green, 2012; Breiman, 2001; Strobl et al.,

2008; Williamson et al., 2021; Bénard et al., 2022).

• Omnibus test: only detects effect; does not quantify an ATE.

• Captures non-linear treatment effects through Mglob
1 .
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Finite-sample valid testing procedure

Procedure 1 (ML-assisted Randomization Test)

1. Obtain observed value of Tn = tn(Y ,Z ,X) as defined in (2).

2. Compute t(r) = tn(Y ,Z (r),X), Z (r) iid∼ Pn, for r = 1, . . . ,R.

3. Calculate p-value:

pval =
1

1 + R

[ R∑
r=1

1{t(r) > Tn}+ 1

]
. (3)

• The test is finite-sample valid (Lehmann and Romano, 2005, e.g.):

P
(
pval ≤ α | X,Hglob

0 ) ≤ α, for any α ∈ [0, 1] and any n > 0.

• What about power?
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Type II error bound

Assumption

• Bernoulli design with probability π ∈ (0, 1),

• (Xi , εi )i∈[n] are i.i.d. with E(εi |Xi ) = 0 and E(ε2i ) < ∞,

• |Yi | ≤ M with probability one.

Define

• F = function class of ML models in M1 (full model) with domain

X × {0, 1}.
• F0 = function class of ML models in M0 (reduced model) with

domain X .

• Alternative hypothesis Hglob
1 : h ̸= 0, g = 0 ⇒ nonzero direct effect.
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Main Theorem

Theorem (G., Lee, Toulis)

Suppose the previous assumption holds with additional regularity

conditions and k = O(1). Then, under the alternative Hglob
1 , for some

small constant C > 0,

P(pval > α) = O

(
k exp

(
−Cn∆2

kM4

))
,

• Quantity ∆ measures the variable importance of treatment:

∆ := inf
f0∈F0

E(Y − f0(X ))2︸ ︷︷ ︸
prediction error in the reduced model

− inf
f∈F

E(Y − f (X ,Z ))2︸ ︷︷ ︸
prediction error in the full model

.

• e.g., ∆ = π(1− π)τ2, in a linear model y = a+ bx + τz .

Takeaway: better prediction ⇒ larger ∆ ⇒ higher power!
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Simulations
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(a) Linear
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(b) Piecewise-constant
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(c) Cosine

Figure 1: Rejection rates for constant treatment effects.

• We implement random forests and linear model in our test

(ML-FRT, LM-FRT).

• Compared to Neyman’s difference-in-means estimator and Lin’s

estimator (interacted regression).

• Benefits from our procedure in more complex outcome models.
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Extensions

Yi = µ+ b(Xi )︸ ︷︷ ︸
baseline

+Zi h(Xi )︸ ︷︷ ︸
direct effect

+ g(X,Z−i )︸ ︷︷ ︸
spillover

+εi .

Treatment heterogeneity. Hhet
0 : h(x) = τ, g = 0 vs. h(x) ̸= τ, g = 0.

• Repeat Procedure 1 for Y − τ0Z to get pval(τ0) and “sup” over τ0.

Spillover. Hsp
0 : g = 0 vs. g ̸= 0. Modify Procedure 1 as:

Msp
0 : Yi ∼ Zi + Xi , Msp

1 : Yi ∼ Zi + A⊤
i. Z + X.

• A ∈ {0, 1}n×n: adjacency matrix between units.

• Spillover effects can be captured by Msp
1 through A⊤

i. Z and X.

• Conditional randomization test: fixing individual treatments Zi but

varying A⊤
i Z . (Athey et al., 2018; Basse et al., 2019, 2024)
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Thank you!

• Wenxuan Guo, JungHo Lee, and Panos Toulis, “ML-assisted

Randomization Tests for Detecting Treatment Effects in A/B

Experiments ,” https://arxiv.org/abs/2501.07722, 2025.
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