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Setup

We focus on the perennial linear regression model:

y = Xβ + ε (1)

• y = (y1, . . . , yn)> is the outcome vector.

• X ∈ Rn×p are covariates.

• ε = (ε1, . . . , εn)> are unobserved errors.

We want to test the global null hypothesis

H0 : β = 0

in a high dimensional setup (p < n but p grows with n or p > n).

• In our paper we also test for the partial nulls HS
0 : βS = 0.

• This allows for inference.
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Prior work

• F-test and its extensions for p > n

[Li et al., 2020, Zhong and Chen, 2011, Cui et al., 2018].

• Minimax optimal tests [Ingster et al., 2010].

However, these methods have limitations:

• Asymptotic methods that do not provide finite-sample guarantees

for either type I or II error.

• Restrictive assumptions on ε, e.g., IIDness, homoskedasticity,

bounded higher moments or sub-Gaussianity.

• These methods are not robust to heavy-tailed or heteroskedastic

errors.

These limitations motivate us to study invariance-based tests.
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Our work and contributions

• We study invariance-based inference, which relies on general

invariance assumptions on the errors, e.g., sign symmetry εi
d

= −εi .
• Invariance-based tests are also known as randomization tests

[Lehmann and Romano, 2005].

• An alternative framework for testing and inference, different from

the standard i.i.d. framework. [Chung and Romano, 2013, Toulis, 2019,

Lei and Bickel, 2020, Dobriban, 2022, Wen et al., 2022].

We provide:

• Finite-sample valid tests.

• Nonasymptotic analysis on type II error.

• Minimax optimality against certain nonsparse alternatives.

Empirically, our invariance-based test has a more robust performance

especially under multicollinearity and heavy-tailed data.
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Component 1: Invariance assumption

• Assume a general form of invariance:

ε
d

= gε | X for all g ∈ Gn .

• Gn is an algebraic group of Rn → Rn linear transformations under

matrix multiplication as the group action.

• Sign symmetry: Consider Gn =

{[
±1 0

. . .
0 ±1

]}
then the invariance

assumption boils down to

(ε1, . . . , εn)
d

= (±ε1, . . . ,±εn) | X .

• Main difference from the i.i.d. framework: We require no further

assumptions on X and ε beyond invariance.
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Component 2: Test statistic

• Use ridge-based test statistic for t(y ,X )

t(y ,X ) = ‖X β̂λ‖2 , β̂λ = (X>X + λIp)−1X>y , (2)

• We choose the ridge statistic for two main reasons:

• Easy to compute and directly applicable for p > n.

• Amenable to theoretical analysis. In particular, this choice leads to a

minimax optimal test.

• Our method allows testing and inference with the ridge estimator,

which is unexplored in the literature.
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A concrete feasible test for the global null

1. Obtain the observed statistic, Tn = t(y ,X ).

2. Compute t(Gry ,X ), where Gr
iid∼ Unif(Gn), r = 1, . . . ,R.

3. Obtain the one-sided p-value:

pval =
1

R + 1

(
1 +

R∑
r=1

I{t(Gry ,X ) > Tn}

)
. (3)

4. Reject H0 : β = 0 if ψα = I{pval ≤ α} = 1.

Remarks.

• Unif(Gn) is the uniform distribution on Gn.

• We draw R samples from Unif(Gn), as enumerating Gn can be

computationally challenging.
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Finite-sample validity

Theorem

Suppose that H0 : β = 0 is true. Then, for any n > 0 and any level

α ∈ (0, 1], we have

E0(ψα | X ) ≤ α .

Proof sketch:

• H0 implies y = ε, so we have y
d

= gy | X .

• t(y ,X )
d

= t(gy ,X ) for any g ∈ Gn.

• {Tn, t(G1y ,X ), . . . , t(GRy ,X )} is a finite-sample valid reference

distribution for Tn.

The proof works for any test statistic.
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Benefits of finite-sample validity

• No further assumptions on X and ε beyond the invariance.

• No asymptotics.

• Simple testing procedure.

• Robust to heavy tailed covariates and errors. See the following type

I errors (%) evaluated on four simulation setups with different

multicollinearity and heavy-tailed data.

Methods small ‖Σ‖F ,

slow-decay

large ‖Σ‖F ,

slow-decay

small ‖Σ‖F ,

fast-decay

small ‖Σ‖F ,

fast-decay

Inv 5.24 4.70 4.73 5.00

SF 16.27 17.38 14.68 13.69

CGZ 7.32 7.26 5.99 6.06

SF: F test on randomly projected covariates, CGZ: Global test based on a U-statistic.

The test has a robust control of type I error, but is it powerful?
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Power analysis

Though any choice of test statistic is valid in our procedure, the ridge

statistic has the following properties in terms of the type II error:

• Simple and interpretable finite-sample bounds.

• Minimax optimal under certain conditions.

To develop the power theory with ridge, we make the following

assumptions.

• Symmetric errors

(ε1, . . . , εn)
d

= (±ε1, . . . ,±εn) | X . (S1)

• p < n but possibly p →∞.
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Finite-sample type II error bounds

Theorem

Suppose σmin > 0. If λ ≤ σ2
min, then for any alternative hypothesis

β 6= 0,

EX (1− ψα) = O
(p2κ4x2

∗
σ2

min

)
+ O

( pκ4σ2
∗

σ2
min‖β‖2

)
.

Remarks.

• Suppose σ2
min = O(n). The error bound reduces to

EX (1−ψα) = O

(
p

n︸︷︷︸
problem dimension

· κ4︸︷︷︸
multicollinearity

·
(

px2
∗︸︷︷︸

model leverage

+
σ2
∗

‖β‖2︸ ︷︷ ︸
SNR

))
.

• κ and σmin denote the condition number and the minimum singular

value of X .

• x∗ := maxi∈[n],j∈[p] |Xij |.
• σ2
∗ := maxi∈[n] E(ε2

i ).
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From finite-sample results to consistency

• Further suppose that κ, x∗, and σ∗ are O(1). Then

EX (1− ψα) = O
(p2

n

)
+ O

( p

n‖β‖2

)
.

• Suppose p2 = o(n). As n→∞, the test is consistent if

‖β‖ = Ω

(√
p

n

)
.

• Below, the red circles indicate regions with high type II errors, and

shrink at a rate
√

p/n.

‖β‖

n = 10 n = 100

• This leads to the formal definition of detection radius.
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Detection radius

• Consider the following alternative hypothesis space

H1 : β ∈ Θ(d), Θ(d) = { β ∈ Rp : ‖β‖ ≥ d } .

• Define the worst-case type II error

B(d , ψ) := sup
β∈Θ(d)

E(1− ψ) .

Definition

We say a test ψ has a detection radius rnp, if for any sequence

dnp = Ω(rnp), it holds that limn→∞ B(dnp, ψ) = 0.

• The detection radius provides a sufficient condition on how strong

the signal should be to guarantee the consistency of a test.

• A smaller detection radius signifies a more powerful test.
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Minimax optimality

Theorem

Suppose that

• Xi are i.i.d. with EXi = 0, EXiX
>
i = Ip, and sub-Gaussian tails.

• εi are i.i.d. with finite fourth moment, and ε ⊥⊥ X.

Then, if

p = o(n0.5−δ) for some δ > 0 and λ = o(n) ,

the invariance-based test, ψα, for the global null hypothesis has a

detection radius rnp = p1/4/
√
n and ψα is minimax optimal.

• We provide the first result of minimax optimality of invariance-based

tests for the global null under (S1).

• It is minimax optimal because p1/4/
√
n matches the least detectable

signal strength, a known result established in [Ingster et al., 2010].
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Simulation (revisited)

Consider a p > n setup from [Li et al., 2020].

We compare our method to “SF” and “CGZ” proposed in

[Li et al., 2020, Cui et al., 2018].

• X ∈ Rn×p with (n, p) = (50, 500).

• (Xi )
n
i=1

iid∼ N (0,Σ) with the covariance Σ satisfying

(1) “slow-decay” in eigenvalues: λi = log−2(i + 1).

(2) “fast-decay”: λi = i−1.

We fix ‖Σ‖F = 100, 300.

• βi
iid∼ Binom(3, 0.3) + 0.3N (0, 1). Rescale β to inspect

‖β‖ = 0, 0.5, 1, 2.

• εi
iid∼ N (0, 1).
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Simulation

Slow-decay Fast-decay

||β|| ||β||
0 0.5 1 2 0 0.5 1 2

Panel A: Normal design, normal errors

‖Σ‖F = 100

Inv 4.76 22.94 49.11 67.38 5.14 22.34 60.87 89.11

SF 4.93 8.13 12.42 15.10 5.09 11.60 25.99 41.52

CGZ 5.22 23.00 41.86 51.88 5.02 26.36 55.89 74.99

‖Σ‖F = 300

Inv 5.03 43.23 65.10 73.34 4.71 51.13 85.33 95.23

SF 5.01 11.32 15.11 16.81 4.96 22.95 38.74 48.15

CGZ 4.87 37.66 51.08 55.28 4.64 49.50 72.08 80.64

Panel B: t1 design, t1 errors

‖Σ‖F = 100

Inv 5.24 62.80 65.46 66.22 4.73 87.55 89.68 89.58

SF 16.27 99.90 99.94 99.97 14.68 99.79 99.86 99.85

CGZ 7.32 83.48 83.51 83.40 5.99 83.90 84.92 85.30

‖Σ‖F = 300

Inv 4.70 53.12 53.04 53.98 5.00 79.12 80.13 80.01

SF 17.38 99.96 99.92 99.93 13.69 99.80 99.81 99.82

CGZ 7.26 82.99 83.06 83.03 6.06 85.25 85.02 84.84

• Panel A: All tests are valid (under ‖β‖ = 0) and “Inv” is powerful

(under ‖β‖ > 0).

• Panel B: “Inv” is robust to heavy-tailed data, whereas other

methods fail to control the type I error.
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Concluding remarks

We develop invariance-based tests in high-dimensional linear models.

• For the global null, we propose a test with finite-sample guarantees

on both type I-II errors. This procedure is also minimax optimal.

• We extend our method to test for partial nulls, based on the idea of

residual randomization [Toulis, 2019]. Check out the paper!

Our work opens up interesting problems for future work:

• Explore the power theory for the global null with p > n.

• Extend invariance-based tests to nonlinear regression models, e.g.,

generalized linear models.
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Thank you!

• Wenxuan Guo and Panos Toulis, “Invariance-based Inference in

High-Dimensional Regression with Finite-Sample Guarantees,”

preprint, 2023
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