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Randomized Experiments

• Randomized experiments are the gold standard in causal inference.
• Examples: i.i.d. Bernoulli randomization, complete randomization,
and A/B tests.

Sample

Control Treatment

• Blue and green denote old and new customers.
• Customer characteristics might be unbalanced.
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Covariate Balance and Covariate-adaptive Designs

• Covariate balance: Different treatment groups share similar
covariates.

• Covariate balance improves the estimation precision.

• Covariate-adaptive designs explicitly balance for the covariates.

• Widely used across different fields, including economics (Bruhn and
McKenzie, 2009), clinical trials (Rosenberger and Lachin, 2015), and
online business platforms (Kohavi and Longbotham, 2023).

2



Connection between Covariate Balance and Treatment Design

Objective: different treatment groups have similar covariates
m

Design: similar units receive distinct treatments

Two high-level questions.

• Design: How to define covariate similarity, and what is an ideal
covariance structure?

• Sampling: How to sample treatments to achieve the desired
covariance?
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Existing Approaches

• Complete randomization (Neyman, 1923).
• Matched pair design (Fisher, 1926; Imbens and Rubin, 2015) to control
pairwise distance of covariates.

• Rerandomization (Morgan and Rubin, 2012) based on imbalance
measures.

• Gram-Schmidt Walk design (Harshaw et al., 2019).

However, existing designs have limitations.

1. Binary treatments.
2. Unclear if covariate balance is optimal.
3. Heuristic adjustments on the covariates, e.g., discretization,
covariate selection, etc.
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Gaussianized Design Optimization

We propose Gaussianized design optimization to optimally balance for
covariates.

• Sampling: Model treatments D as transformations of multivariate
Gaussian random variables.

• Design: Convert the design problem to an optimization problem
over Gaussian covariance matrices.

Contributions.

1. Arbitrary number of treatment arms, even continuous.
2. Optimal covariate balance (local); Quantitative comparison of
designs.

3. Different types of covariates, e.g., categorical/continuous,
univariate/high-dimensional.
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Problem Setup

• D = {1, . . . , K}: the treatment space.
• D = (D1, . . . ,Dn): the treatment vector with Di ∈ D.
• Yi(k): the potential outcome of unit i under treatment k.

Focus on a general causal effect with user-specified (wk)Kk=1:

τw =
K∑
k=1

wkτk , τk =
1
n

n∑
i=1

Yi(k) .

Estimation:

• Observe Yi =
∑K

k=1 I{Di = k}Yi(k).
• Use a Horvitz-Thompson estimator to estimate τw :

τ̂w =
K∑
k=1

wkτ̂k , τ̂k =
1
n

n∑
i=1

I{Di = k}
P(Di = k)

Yi .
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MSE Bound of Horvitz-Thompson Estimators

To derive the design objective, we analyze the Mean Squared Error (MSE)
of the Horvitz-Thompson estimator.

• For τ̂k,

E(τ̂k − τk)
2 =

K2

n2
Y(k)>Covk(D)Y(k) .

Y(k) = (Y1(k), . . . , Yn(k))>, Covk(D) = Cov(I{D1 = k}, . . . , I{Dn = k}).
• For a general estimator τ̂w ,

MSE = E(τ̂w − τw)
2 ≤ K3

n2
K∑
k=1

w2kY(k)>Covk(D)Y(k) =: MB .

Goal of the experimental design is to minimize MSE through Covk(D).
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Covariate Balance Measures

MB is unobservable as Y(k) is unknown.

• Assume Y(k) = Xβk, such that balancing for covariates is beneficial.

MB =
K3

n2
K∑
k=1

w2kβ>
k X>Covk(D)Xβk .

• Worst-case analysis (Harshaw et al., 2019): If k = 1, . . . , K , ‖βk‖ ≤ M,

sup
‖βk‖≤M

MB ∝
K∑
k=1

w2k‖X>Covk(D)X‖op . (1)

• Average-case analysis (Isaki and Fuller, 1982): If {βk}Kk=1 ∼ (0, Id),

EβkMB ∝
K∑
k=1

w2k‖X>Covk(D)X‖nuc . (2)

(1) and (2) characterize the MSE under different structural assumptions.

8



Computational Challenges of Design Optimization

• Design optimization in the treatment space can be NP hard.

• Under K = 2 setting, the design optimization reduces to

min
Cov(D)

‖X>Cov(D)X‖nuc = min
Cov(D)

tr
(
XX>Cov(D)

)
.

• Equivalent to the Max-Cut problem (NP-hard).

• Our solution is Gaussianization, motivated by Goemans and
Williamson rounding of Max-Cut.
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Gaussianization

• Gaussianization:

Di = g(Ti) , T := (T1, . . . , Tn) ∼ N (0,Σ) .

• Σ is a design matrix from

correlation elliptope: E = { Σ ∈ Rn×n | Σ � 0,Σii = 1 } .

• For example, to get a uniform design, set

g(t) = i , if t ∈
(
Φ−1

(
i− 1
K

)
,Φ−1

(
i
K

))
, i = 1, . . . , K .

Φ(·) is the standard normal CDF.
• When K = 2 with D = {±1},

g(Ti) = sign(Ti) .

• How does this help with design optimization?
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Gaussianized Representation

Proposition 1 (G., Liang, and Toulis)

Under the Gaussianization Di = g(Ti), we have

Covk(D) = fk(Σ) ,

where fk : [−1, 1]→ R are elementwise functions with analytical
expressions.

• Proposition 1 induces covariate balance measures on Σ:
K∑
k=1

w2k‖X>Covk(D)X‖norm =
K∑
k=1

w2k‖X>fk(Σ)X‖norm .

• fk(ρ) = rk−1,k−1(ρ) + rk,k(ρ)− 2rk−1,k(ρ) where

ri,j(ρ) =
∫ ρ

0
pr(qi,qj)dr .

qi = Φ−1(i/K) and pρ(x, y) is the density of BN(0, 0, 1, 1, ρ).
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Gaussianized Design Optimization

Design of experiments now boils down to an optimization:

min
Σ∈E

K∑
k=1

w2k‖X>fk(Σ)X‖norm , norm ∈ {nuc, op} .

E.g., if K = 3, wk = 1/3, and norm = nuc, the objective =
∥∥X>f (Σ)X∥∥nuc.
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• ± correlations in Σ⇔ ± correlations in f (Σ).
• Gaussianized design optimization:

similar (Xi, Xj)⇒ negative f (Σij)⇒ negative Σij.
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Projected Gradient Descent

We propose a projected gradient descent algorithm on Σ to solve

min
Σ∈E

K∑
k=1

w2k‖X>fk(Σ)X‖norm =: l(Σ) .

At each iteration t:

1. Gradient descent: Σt ← Σt−1 − η∇l(Σt−1).
2. Projection: Σt ← ProjE(Σt).

Remarks.

• Local optimality due to the non-convex objective l(·).
• Initialize design optimization from different designs.
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Theoretical Guarantees

Consider design-based framework where the only randomness comes
from the treatment assignment D.

Theorem 1 (G., Liang, and Toulis, Informal)
Let T ∼ N (0,Σ∗) with Σ∗ from Gaussianized design optimization.

Under regularity conditions on {Yi(k)}ni=1 and conditions on the
optimization algorithm, it holds that√

n (τ̂k − τk)
d→ N (0, σ2)) .

Let τ̂ iidk be the estimator under i.i.d. uniform design.

Var(τ̂ iidk )− Var(τ̂k) > 0 .

• Design-based confidence intervals can be constructed.
• Nonzero variance reduction compared to the i.i.d. design.
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Three-treatment Example: Gaussianized Design Optimization

• Suppose D = {1, 2, 3} and we want to estimate

τ =
3∑
k=1

1
3
τk , τk =

1
n

n∑
i=1

Yi(k) .

• Formulate the Gaussianized design optimization

min
Σ∈E

3∑
k=1

‖X>fk(Σ)X‖norm .

• Run projected gradient descent to get Σ∗.

• Generate Di = g(Ti), T ∼ N (0,Σ∗).

• Perform estimation and inference for τ .
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Three-treatment Example: MSE Trajectory
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Figure 1: MSE of Horvitz-Thompson estimators over iterations of design
optimization.

• Initialize Σ as i.i.d. and block designs.
• Gaussianized design optimization reduces the MSE by > 60%.
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Three-treatment Example: Optimized Covariance

(Initial Σ, design objective)

(a) block,op (b) block,nuc (c) iid,op

value

(d) iid,nuc

Our design picks up cross-unit correlations in the Gaussian space.

• Different initial designs⇒ different covariance structure.
• Choices of norm affects the covariance in (c), (d).
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Conclusion and Future Work

We develop a Gaussianization framework to optimize experimental
designs for covariate balance.

• This approach allows general covariates and multiple treatment
arms, offering great flexibility over existing methods.

• The paper contains design-based inference under Gaussianization,
and extension to continuous treatments for studying dose-response
relations.

Open problems:

• Optimal experimental design under interference.
• Practical confidence intervals by figuring out the best suitable
variance bound.

• Randomization inference under Gaussianization.
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Thank you!
• The complete version: Wenxuan Guo, Tengyuan Liang, and Panos
Toulis “Gaussianized Design Optimization for Covariate Balance in
Randomized Experiments,”
https://arxiv.org/abs/2502.16042, 2025.
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